Files
grafikaKBT/main.cpp

780 lines
23 KiB
C++

#define _CRT_SECURE_NO_WARNINGS
#ifdef _MSC_VER // Check if MS Visual C compiler
# pragma comment(lib, "opengl32.lib") // Compiler-specific directive to avoid manually configuration
# pragma comment(lib, "glu32.lib") // Link libraries
#endif
#ifdef _MSC_VER
# ifndef _MBCS
# define _MBCS
# endif
# ifdef _UNICODE
# undef _UNICODE
# endif
# ifdef UNICODE
# undef UNICODE
# endif
#endif
// #define GLEW_STATIC
#include <windows.h> // Window defines
#include "GL/glew.h" // Dołączony jako pliki glew.c i glew.h
//#include <gl/gl.h> // OpenGL
#include <gl/glu.h> // biblioteka GLU; program kompiluje się bez niej, ale w celu uniknięcia w przyszłości niespodzianek to została dołączona
#include <math.h> // Define for sqrt
//#include <stdio.h>
#include <iostream>
#include "RESOURCE.H" // About box resource identifiers.
#include "szescian.h"
#include "loadOBJ.h"
//#include <vector>
#include "GL/glm/glm.hpp"
//#include "GL/glfw3.h"
#include <ctime>
using namespace glm;
#define glRGB(x, y, z) glColor3ub((GLubyte)x, (GLubyte)y, (GLubyte)z)
#define BITMAP_ID 0x4D42 // identyfikator formatu BMP
#define GL_PI 3.1415
#define getTime lastTime = std::time(nullptr);
#define timestampedCout(msg) {getTime; std::cout << "( " << lastTime << ") " << msg << "\n";}
//using namespace std;
HPALETTE hPalette = NULL;
// Application name and instance storeage
static LPCTSTR lpszAppName = "grafikaKBT";
static HINSTANCE hInstance;
// Rotation amounts
static GLfloat xRot = 0.0f;
static GLfloat yRot = 0.0f;
static GLfloat zRot = 0.0f;
static GLsizei lastHeight;
static GLsizei lastWidth;
// Opis tekstury
BITMAPINFOHEADER bitmapInfoHeader; // nagłówek obrazu
unsigned char* bitmapData; // dane tekstury
unsigned int texture[2]; // obiekt tekstury
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam);
BOOL APIENTRY AboutDlgProc(HWND hDlg, UINT message, UINT wParam, LONG lParam);
void SetDCPixelFormat(HDC hDC);
int polygonmode = 0;
std::time_t lastTime = std::time(nullptr);
int monitormode = 0;
int monitormodecounter = 0;
std::time_t monitormodehelper;
// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h) {
GLfloat nRange = 100.0f;
GLfloat fAspect;
// Prevent a divide by zero
if (h == 0) h = 1;
lastWidth = w;
lastHeight = h;
fAspect = (GLfloat)w / (GLfloat)h;
// Set Viewport to window dimensions
glViewport(0, 0, w, h);
// Reset coordinate system
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Establish clipping volume (left, right, bottom, top, near, far)
if (w <= h) glOrtho(-nRange, nRange, -nRange * h / w, nRange * h / w, -nRange, nRange);
else glOrtho(-nRange * w / h, nRange * w / h, -nRange, nRange, -nRange, nRange);
// Establish perspective:
/*
gluPerspective(60.0f, fAspect, 1.0, 400);
*/
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
// LoadBitmapFile
// opis: ładuje mapę bitową z pliku i zwraca jej adres.
// Wypełnia strukturę nagłówka.
// Nie obsługuje map 8-bitowych.
unsigned char* LoadBitmapFile(char* filename, BITMAPINFOHEADER* bitmapInfoHeader) {
FILE* filePtr; // wskaźnik pozycji pliku
BITMAPFILEHEADER bitmapFileHeader; // nagłówek pliku
unsigned char* bitmapImage; // dane obrazu
int imageIdx = 0; // licznik pikseli
unsigned char tempRGB; // zmienna zamiany składowych
// otwiera plik w trybie "read binary"
filePtr = fopen(filename, "rb");
if (filePtr == NULL)
return NULL;
// wczytuje nagłówek pliku
fread(&bitmapFileHeader, sizeof(BITMAPFILEHEADER), 1, filePtr);
// sprawdza, czy jest to plik formatu BMP
if (bitmapFileHeader.bfType != BITMAP_ID)
{
fclose(filePtr);
return NULL;
}
// wczytuje nagłówek obrazu
fread(bitmapInfoHeader, sizeof(BITMAPINFOHEADER), 1, filePtr);
// ustawia wskaźnik pozycji pliku na początku danych obrazu
fseek(filePtr, bitmapFileHeader.bfOffBits, SEEK_SET);
// przydziela pamięć buforowi obrazu
bitmapImage = (unsigned char*)malloc(bitmapInfoHeader->biSizeImage);
// sprawdza, czy udało się przydzielić pamięć
if (!bitmapImage) {
free(bitmapImage);
fclose(filePtr);
return NULL;
}
// wczytuje dane obrazu
fread(bitmapImage, 1, bitmapInfoHeader->biSizeImage, filePtr);
// sprawdza, czy dane zostały wczytane
if (bitmapImage == NULL) {
fclose(filePtr);
return NULL;
}
// zamienia miejscami składowe R i B
for (imageIdx = 0; imageIdx < bitmapInfoHeader->biSizeImage; imageIdx += 3) {
tempRGB = bitmapImage[imageIdx];
bitmapImage[imageIdx] = bitmapImage[imageIdx + 2];
bitmapImage[imageIdx + 2] = tempRGB;
}
// zamyka plik i zwraca wskaźnik bufora zawierającego wczytany obraz
fclose(filePtr);
return bitmapImage;
}
void SetDCPixelFormat(HDC hDC) {
int nPixelFormat;
static PIXELFORMATDESCRIPTOR pfd = {
sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
1, // Version of this structure
PFD_DRAW_TO_WINDOW | // Draw to Window (not to bitmap)
PFD_SUPPORT_OPENGL | // Support OpenGL calls in window
PFD_DOUBLEBUFFER, // Double buffered
PFD_TYPE_RGBA, // RGBA Color mode
24, // Want 24bit color
0,0,0,0,0,0, // Not used to select mode
0,0, // Not used to select mode
0,0,0,0,0, // Not used to select mode
32, // Size of depth buffer
0, // Not used to select mode
0, // Not used to select mode
PFD_MAIN_PLANE, // Draw in main plane
0, // Not used to select mode
0,0,0 }; // Not used to select mode
// Choose a pixel format that best matches that described in pfd
nPixelFormat = ChoosePixelFormat(hDC, &pfd);
// Set the pixel format for the device context
SetPixelFormat(hDC, nPixelFormat, &pfd);
}
std::vector <glm::vec3> vertices;
std::vector <glm::vec2> uvs;
std::vector <glm::vec3> normals; // Won't be used at the moment.
GLuint vertexbuffer;
GLuint uvbuffer;
void SetupRC() {
// Light values and coordinates
//GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
//GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
//GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f };
//GLfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };
//GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };
glEnable(GL_DEPTH_TEST); // Hidden surface removal
glFrontFace(GL_CCW); // Counter clock-wise polygons face out
glEnable(GL_CULL_FACE); // Do not calculate inside of jet // !!! znacząco poprawia wydajność
// Enable lighting
//glEnable(GL_LIGHTING);
// Setup and enable light 0
//glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);
//glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);
//glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
//glLightfv(GL_LIGHT0, GL_POSITION, lightPos);
//glEnable(GL_LIGHT0);
// Enable color tracking
//glEnable(GL_COLOR_MATERIAL);
// Set Material properties to follow glColor values
//glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
// All materials hereafter have full specular reflectivity
// with a high shine
//glMaterialfv(GL_FRONT, GL_SPECULAR, specref);
//glMateriali(GL_FRONT, GL_SHININESS, 128);
// White background
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
// Black brush
glColor3f(0.0, 0.0, 0.0);
// Initialize GLEW
timestampedCout("Inicjalizowanie GLEW...");
glewExperimental = true; // Needed for core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW\n");
getchar();
// glfwTerminate();
return;
}
timestampedCout("Zainicjalizowano GLEW.");
// Załaduj model z pliku .obj
// TODO: zmierzyć czas ładowania łazika w cyklach procesora/mikrosekundach
timestampedCout("Ladowanie lazika...");
bool res = loadOBJ("res/models/lazik4.obj", vertices, uvs, normals);
// bool res = loadOBJ("res/models/suzanne.obj", vertices, uvs, normals);
if (res) timestampedCout("Pomyslnie zaladowano model lazika.")
else timestampedCout("Nie udalo sie zaladowac modelu lazika.");
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec3), &vertices[0], GL_STATIC_DRAW);
// timestampedCout("rozmiar vertexbuffer: " << vertices.size() * sizeof(glm::vec3));
glGenBuffers(1, &uvbuffer);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glBufferData(GL_ARRAY_BUFFER, uvs.size() * sizeof(glm::vec2), &uvs[0], GL_STATIC_DRAW);
// timestampedCout("rozmiar uvbuffer: " << uvs.size() * sizeof(glm::vec2));
//glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
}
void RenderScene(void) {
//float normal[3]; // Storage for calculated surface normal
// Save the matrix state and do the rotations
glPushMatrix();
glRotatef(xRot, 1.0f, 0.0f, 0.0f);
glRotatef(yRot, 0.0f, 1.0f, 0.0f);
glRotatef(zRot, 0.0f, 0.0f, 1.0f);
// gluLookAt(
// 0, 0, 0, // the position of your camera, in world space
// 0, 0, 0, // where you want to look at, in world space
// 0, 1, 0 // probably glm::vec3(0,1,0), but (0,-1,0) would make you looking upside-down, which can be great too
// );
switch (polygonmode) {
case 1:
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
break;
default:
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
// prymitywny licznik FPS
if (monitormode) {
std::time_t now_t = std::time(nullptr);
if (now_t > monitormodehelper) {
std::cout << (int)(monitormodecounter / (now_t - monitormodehelper)) << " fps\n";
monitormodehelper = now_t;
monitormodecounter = 0;
}
else {
monitormodecounter++;
}
}
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use our shader
//glUseProgram(programID);
// // Bind our texture in Texture Unit 0
// glActiveTexture(GL_TEXTURE0);
// glBindTexture(GL_TEXTURE_2D, Texture);
// // Set our "myTextureSampler" sampler to use Texture Unit 0
// glUniform1i(TextureID, 0);
// 1st attribute buffer : vertices
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
0, // attribute
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// 2nd attribute buffer: UVs
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glVertexAttribPointer(
1, // attribute
2, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// Draw vertices
glDrawArrays(GL_TRIANGLES, 0, vertices.size());
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
// Swap buffers
//glfwSwapBuffers(window);
//glfwPollEvents();
/*
szescian nowy;
nowy.create(0, 0, 0, 10);
nowy.create(-10, 20, 0, 10);
nowy.create(25, 10, 0, 10);
*/
//Wyrysowanie prostokata:
//glRectd(-10.0,-10.0,20.0,20.0);
glPopMatrix(); // wymagane
glMatrixMode(GL_MODELVIEW); // zmniejsza zużycie GPU
// Flush drawing commands
// glFlush();
}
// If necessary, creates a 3-3-2 palette for the device context listed.
HPALETTE GetOpenGLPalette(HDC hDC) {
HPALETTE hRetPal = NULL; // Handle to palette to be created
PIXELFORMATDESCRIPTOR pfd; // Pixel Format Descriptor
LOGPALETTE* pPal; // Pointer to memory for logical palette
int nPixelFormat; // Pixel format index
int nColors; // Number of entries in palette
int i; // Counting variable
BYTE RedRange, GreenRange, BlueRange;
// Range for each color entry (7,7,and 3)
// Get the pixel format index and retrieve the pixel format description
nPixelFormat = GetPixelFormat(hDC);
DescribePixelFormat(hDC, nPixelFormat, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
// Does this pixel format require a palette? If not, do not create a
// palette and just return NULL
if (!(pfd.dwFlags & PFD_NEED_PALETTE)) return NULL;
// Number of entries in palette. 8 bits yeilds 256 entries
nColors = 1 << pfd.cColorBits;
// Allocate space for a logical palette structure plus all the palette entries
pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) + nColors * sizeof(PALETTEENTRY));
// Fill in palette header
pPal->palVersion = 0x300; // Windows 3.0
pPal->palNumEntries = nColors; // table size
// Build mask of all 1's. This creates a number represented by having
// the low order x bits set, where x = pfd.cRedBits, pfd.cGreenBits, and
// pfd.cBlueBits.
RedRange = (1 << pfd.cRedBits) - 1;
GreenRange = (1 << pfd.cGreenBits) - 1;
BlueRange = (1 << pfd.cBlueBits) - 1;
// Loop through all the palette entries
for (i = 0; i < nColors; i++) {
// Fill in the 8-bit equivalents for each component
pPal->palPalEntry[i].peRed = (i >> pfd.cRedShift) & RedRange;
pPal->palPalEntry[i].peRed = (unsigned char)(
(double)pPal->palPalEntry[i].peRed * 255.0 / RedRange);
pPal->palPalEntry[i].peGreen = (i >> pfd.cGreenShift) & GreenRange;
pPal->palPalEntry[i].peGreen = (unsigned char)(
(double)pPal->palPalEntry[i].peGreen * 255.0 / GreenRange);
pPal->palPalEntry[i].peBlue = (i >> pfd.cBlueShift) & BlueRange;
pPal->palPalEntry[i].peBlue = (unsigned char)(
(double)pPal->palPalEntry[i].peBlue * 255.0 / BlueRange);
// pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
pPal->palPalEntry[i].peFlags = 0;
}
// Create the palette
hRetPal = CreatePalette(pPal);
// Go ahead and select and realize the palette for this device context
SelectPalette(hDC, hRetPal, FALSE);
RealizePalette(hDC);
// Free the memory used for the logical palette structure
free(pPal);
// Return the handle to the new palette
return hRetPal;
}
int APIENTRY WinMain(HINSTANCE hInst, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) {
MSG msg; // Windows message structure
WNDCLASS wc; // Windows class structure
HWND hWnd; // Storeage for window handle
hInstance = hInst;
// Register Window style
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
// No need for background brush for OpenGL window
wc.hbrBackground = NULL;
wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU);
wc.lpszClassName = lpszAppName;
// Register the window class
if (RegisterClass(&wc) == 0) return FALSE;
// Create the main application window
hWnd = CreateWindow(
lpszAppName,
lpszAppName,
// OpenGL requires WS_CLIPCHILDREN and WS_CLIPSIBLINGS
WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
// Window position and size
50, 50,
400, 400,
NULL,
NULL,
hInstance,
NULL);
// If window was not created, quit
if (hWnd == NULL) return FALSE;
// Display the window
ShowWindow(hWnd, SW_SHOW);
UpdateWindow(hWnd);
// Process application messages until the application closes
while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
return msg.wParam;
}
// Window procedure, handles all messages for this program
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) {
static HGLRC hRC; // Permenant Rendering context
static HDC hDC; // Private GDI Device context
switch (message) {
// Window creation, setup for OpenGL
case WM_CREATE:
// Store the device context
hDC = GetDC(hWnd);
// Select the pixel format
SetDCPixelFormat(hDC);
// Create palette if needed
hPalette = GetOpenGLPalette(hDC);
// Create the rendering context and make it current
hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);
SetupRC();
glGenTextures(2, &texture[0]); // tworzy obiekt tekstury
// ładuje pierwszy obraz tekstury:
bitmapData = LoadBitmapFile((char*)"Bitmapy\\checker.bmp", &bitmapInfoHeader);
glBindTexture(GL_TEXTURE_2D, texture[0]); // aktywuje obiekt tekstury
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
// tworzy obraz tekstury
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, bitmapInfoHeader.biWidth,
bitmapInfoHeader.biHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, bitmapData);
if (bitmapData) free(bitmapData);
// ładuje drugi obraz tekstury:
bitmapData = LoadBitmapFile((char*)"Bitmapy\\crate.bmp", &bitmapInfoHeader);
glBindTexture(GL_TEXTURE_2D, texture[1]); // aktywuje obiekt tekstury
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
// tworzy obraz tekstury
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, bitmapInfoHeader.biWidth,
bitmapInfoHeader.biHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, bitmapData);
if (bitmapData) free(bitmapData);
// ustalenie sposobu mieszania tekstury z tłem
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
break;
// Window is being destroyed, cleanup
case WM_DESTROY:
// Deselect the current rendering context and delete it
wglMakeCurrent(hDC, NULL);
wglDeleteContext(hRC);
// Delete the palette if it was created
if (hPalette != NULL) DeleteObject(hPalette);
// Tell the application to terminate after the window
// is gone.
PostQuitMessage(0);
break;
// Window is resized.
case WM_SIZE:
// Call our function which modifies the clipping
// volume and viewport
ChangeSize(LOWORD(lParam), HIWORD(lParam));
break;
// The painting function. This message sent by Windows
// whenever the screen needs updating.
case WM_PAINT:
// Call OpenGL drawing code
RenderScene();
SwapBuffers(hDC);
// Validate the newly painted client area
ValidateRect(hWnd, NULL);
break;
// Windows is telling the application that it may modify
// the system palette. This message in essance asks the
// application for a new palette.
case WM_QUERYNEWPALETTE:
// If the palette was created.
if (hPalette) {
int nRet;
// Selects the palette into the current device context
SelectPalette(hDC, hPalette, FALSE);
// Map entries from the currently selected palette to
// the system palette. The return value is the number
// of palette entries modified.
nRet = RealizePalette(hDC);
// Repaint, forces remap of palette in current window
InvalidateRect(hWnd, NULL, FALSE);
return nRet;
}
break;
// This window may set the palette, even though it is not the
// currently active window.
case WM_PALETTECHANGED:
// Don't do anything if the palette does not exist, or if
// this is the window that changed the palette.
if ((hPalette != NULL) && ((HWND)wParam != hWnd)) {
// Select the palette into the device context
SelectPalette(hDC, hPalette, FALSE);
// Map entries to system palette
RealizePalette(hDC);
// Remap the current colors to the newly realized palette
UpdateColors(hDC);
return 0;
}
break;
// Key press, check for arrow keys to do cube rotation.
case WM_KEYDOWN:
switch (wParam) {
case VK_UP:
xRot -= 5.0f;
break;
case VK_DOWN:
xRot += 5.0f;
break;
case VK_LEFT:
yRot -= 5.0f;
break;
case VK_RIGHT:
yRot += 5.0f;
break;
case 'Q':
zRot += 5.0f;
break;
case 'E':
zRot -= 5.0f;
break;
case 'R':
xRot = 0;
yRot = 0;
zRot = 0;
break;
case ' ': // 32
polygonmode = !polygonmode;
getTime;
if (polygonmode) timestampedCout("Uwaga! Tryb wireframe jest niewydajny i powinien sluzyc tylko do debugowania!");
break;
case 114: // F3
monitormode = !monitormode;
if (monitormode) {
monitormodehelper = std::time(nullptr) - 1;
timestampedCout("Wlaczono tryb monitorowania wydajnosci.");
}
if (!monitormode) timestampedCout("Wylaczono tryb monitorowania wydajnosci.");
break;
default:
timestampedCout("Nacisnieto nierozpoznany klawisz: " << (int)wParam);
}
xRot = (const int)xRot % 360;
yRot = (const int)yRot % 360;
zRot = (const int)zRot % 360;
InvalidateRect(hWnd, NULL, FALSE);
break;
// A menu command
case WM_COMMAND:
switch (LOWORD(wParam)) {
// Exit the program
case ID_FILE_EXIT:
DestroyWindow(hWnd);
break;
// Display the about box
case ID_HELP_ABOUT:
DialogBox(hInstance, MAKEINTRESOURCE(IDD_DIALOG_ABOUT), hWnd, (DLGPROC)AboutDlgProc);
break;
}
break;
default: // Passes it on if unproccessed
return (DefWindowProc(hWnd, message, wParam, lParam));
}
return (0L);
}
// Dialog procedure.
BOOL APIENTRY AboutDlgProc(HWND hDlg, UINT message, UINT wParam, LONG lParam) {
switch (message) {
// Initialize the dialog box
case WM_INITDIALOG:
int i;
GLenum glError;
// glGetString demo
SetDlgItemText(hDlg, IDC_OPENGL_VENDOR, reinterpret_cast<LPCSTR>(glGetString(GL_VENDOR)));
SetDlgItemText(hDlg, IDC_OPENGL_RENDERER, (LPCSTR)glGetString(GL_RENDERER));
SetDlgItemText(hDlg, IDC_OPENGL_VERSION, (LPCSTR)glGetString(GL_VERSION));
SetDlgItemText(hDlg, IDC_OPENGL_EXTENSIONS, (LPCSTR)glGetString(GL_EXTENSIONS));
// gluGetString demo
SetDlgItemText(hDlg, IDC_GLU_VERSION, (LPCSTR)gluGetString(GLU_VERSION));
SetDlgItemText(hDlg, IDC_GLU_EXTENSIONS, (LPCSTR)gluGetString(GLU_EXTENSIONS));
// Display any recent error messages
i = 0;
do {
glError = glGetError();
SetDlgItemText(hDlg, IDC_ERROR1 + i, (LPCSTR)gluErrorString(glError));
i++;
} while (i < 6 && glError != GL_NO_ERROR);
return (TRUE);
break;
// Process command messages
case WM_COMMAND:
// Validate and Make the changes
if (LOWORD(wParam) == IDOK) EndDialog(hDlg, TRUE);
break;
// Closed from sysbox
case WM_CLOSE:
EndDialog(hDlg, TRUE);
break;
}
return FALSE;
}